

MBC-003-001014022 Seat No. _____

B. Sc. (Sem. IV) (Biochemistry) (CBCS) Examination

March / April - 2018

Paper - 401: Biophysical & Biochemical Techniques

		Faculty Code: 003	
		Subject Code : 001014022	
Time	e : 2	Hours] [Total Marks : 7	0
1	(A)	moved the form wing questions .	4
		1) Define Centrifugation.	
		2) What is RCF?	
		3) Name the different types of rotors used in centrifuges.	
		4) List the gradient materials used in density gradient centrifugation.	
	(B)	Answer Any one of the following questions:	2
		1) Write applications of high speed centrifuge.	
		2) List the factors affecting on rate of sedimentation.	
	(C)	Answer Any one of the following questions:	3
		1) Describe the relationship between RCF and rpm.	
		2) Write a note on density gradient centrifugation and its applications.	
	(D)	Answer any one of the following questions:	5
		1) Define homogenization. Write a detailed note on separation of cell organelles from animal tissue homogenate by differential centrifugation.	
		2) Write short note on analytical ultracentrifuges.	
2	(A)	Answer the following questions:	4
		1) Why glass or plastic cuvettes can not be used and only quartz cuvettes are being used to record absorbance of DNA solution at 260 nm in spectrophotometers?	
MD	2 000	01014000 1 1	

- (2) Write the formula showing relationship between absorbance (A) and percent transmittance.(3) Write the differences between colorimeters and spectrophotometers.
- (4) Define the term wavelength using suitable diagram.
- (B) Answer Any **one** of the following questions:
 - (1) Define Beer's and Lambert's laws of light absorption.
 - (2) Explain absorption spectra and absorption maxima using suitable diagram.
- (C) Answer any **one** of the following questions:
 - (1) Discuss basic and advanced applications spectrophotometers .
 - (2) Write a brief note on diffraction gratting monochromators and discuss why they are the best monochromators?
- (D) Answer any **one** of the following questions: 5
 - (1) Draw a labelled diagram of double beam spectrophotometer and discuss how one beam of monochromatic light is chopped in to two beams of monochromatic light?
 - (2) Write a detailed note on photomultiplier tube and explain why its is the detector of choice in sophisticated spectrophotometers?
- 3 (A) Answer the following questions:
 - (1) What is Chromatography? Write its importance.
 - (2) Define analyte.
 - (3) What is Distribution coefficient K_d in chromatography?
 - (4) What type of paper is used in paper chromatography? Why can't we use ordinary writing paper to carry out paper chromatography?
 - (B) Answer any **one** of the following questions:
 - (1) What are the applications of Gas Liquid Chromatography (GLC)?
 - (2) Write the differences between stationary phase and mobile phase using suitable examples.

	(C)	Ans	wer any one of the following questions:	3
		(1)	Write short note on basic principle of Affinity	
			Chromatography.	
		(2)	State applications of Size exclusion (molecular sieve) Chromatography	
	(D)	Ans	wer any one of the following questions:	5
		(1)	Write advantages of HPLC over conventional chromatographic techniques and write a brief note on applications of HPLC.	
		(2)	Write a short note on principle and applications of ion exchange chromatography.	
4	(A)	Ans	wer the following questions:	4
		(1)	What is the net charge of DNA molecules? Why?	
		(2)	What is isoelectric point?	
		(3)	How buffer would affect electrophoretic mobility of proteins on gel electrophoresis?	
		(4)	Write the names of materials used as a supporting medium in gel electrophoresis	
	(B)	Ans	wer Any one of the following questions:	2
		(1)	Write applications of Gel Electrophoresis in biochemistry and molecular biology.	
		(2)	What is 2D electrophoresis? Write its applications. Why do we perform IEF first and then the SDS PAGE and not the other way round?	
	(C)	Ans	wer any one of the following questions:	3
		(1)	Write a brief note about making of Polyacrylamide gel and describe how the pore size can be controlled during making of polyacrylamide gel?	
		(2)	How properties of sample itself like; charge quantity, quality and molecular weight of the sample can affect its electrophoretic mobility?	
	(D)	Ans	wer any one of the following questions:	5
	•	(1)	Define electrophoresis and write a brief note about principle and applications of SDS PAGE.	
		(2)	Write a short note on agarose gel electrophoresis of nucleic acids.	
MBO	C-003	-0010	014022] 3 [Cont	t d

5	(A)	Answer the following questions:	4
		(1) Define radiation	
		(2) If a half life of the radioisotope is 10 days, after 30 days of radioactive decay, what percentage of the original radioactivity would remain in the sample?	
		(3) Write the different types of isotopes of hydrogen with their atomic number and mass numbers.	
		(4) Write the differences between CPM and DPM.	
	(B)	Answer any one of the following questions:	2
		(1) Explain negatron emission by radioactive decay with one suitable example.	
		(2) Write the important properties of gamma radiation.	
	(C)	Answer any one of the following questions:	3
		(1) Enlist units of radioactivity and explain atleast three units in short.	
		(2) Write a short note on Gieger Muller counter and its applications in laboratory.	
	(D)	Answer Any one of the following questions:	5
	, ,	(1) How can you measure radioactivity by liquid scintillation counting?	

(2) Discuss applications of radioisotopes, in the field of biology and medical sciences.